UM RCF Wheel

UM RCF Wheel

车轮滚动接触疲劳模块


UM ICON.gif 模块简介


UM RCF Wheel模块可以预测分析铁路车轮滚动接触疲劳损伤,为踏面优化设计提供参考。

  • 基于UM Loco模块车辆动力学仿真的结果,考虑不同的车轮踏面外形,定义车轮滚动接触疲劳损伤累积速度

  • 提供四种滚动接触疲劳准则

  • 基于UM Loco/Wheel Profile Wear Evolution模块车轮型面磨耗分析的结果,进行滚动接触疲劳分析,充分考虑型面磨耗的影响

  • 考虑车轮材料硬度对滚动接触疲劳累积损伤速度的影响

  • 考虑残余应力对滚动接触疲劳累积损伤速度的影响

  • 提供专门的图形化工具展示滚动接触疲劳分析的应力和损伤结果


rcf_modelling_eng.gif

UM ICON.gif RCF评估准则


UM RCF Wheel模块提供以下四种损伤累积准则

    • 最大剪应力准则

    • Dang Van 准则

    • Sines 准则

    • 联合准则

rcf_curve_eng.gif

UM ICON.gif 车轮模型


UM软件根据每次磨耗后的车轮踏面自动生成一个局部有限元网格模型,单元尺寸为1mm。

在满足应力计算精度的前提下,使得网格数量最少,计算工作量最少。.

fig_3_eng.gif

UM ICON.gif 等效应力

疲劳损伤累积分析的对象是车轮的一个径向断面,车轮每滚动一周,断面就与钢轨接触一次。

轮轨接触力的计算采用Kik-Piotrowski算法或卡尔克的CONTACT程序,均支持轮轨多点接触,这在分析磨耗型踏面时是非常必要的。

fig_4_1_eng.giffig_4_2_eng.gif



UM ICON.gif 材料硬度


RCF曲线通常由试验获得,下图展示的是三种不同硬度材料的RCF曲线。


rcf_curve_HB_eng.gif


UM ICON.gif 磨耗效应


在进行RCF仿真前必须要先完成磨耗分析,并保存相应的数据。每一次磨耗迭代都会生成新的踏面,RCF仿真时会自动更新网格。


rcf_wear_eng.gif

UM ICON.gif 残余应力


在车轮加工和装配过程中产生的残余应力会对疲劳损伤累积产生影响,RCF模块为用户提供了相应的数据输入接口。

rcf_residual_eng.gif

UM ICON.gif 出版文献

1. Sakalo V.I., Sakalo A.V., Kossov V.S. Mechanics of contact interaction of wheel and rail. In: Direct-Media, Moscow; Berlin; 2021 (in Russian).

2. Sakalo V.I., Sakalo A.V. Criteria for predicting the initiation of rolling contact fatigue damage in the railway wheels and rails. Vestnik of the Railway Research Institute 2019;3:141–148 (in Russian). DOI: 10.21780/2223-9731-2019-78-3-141-148

3. Sakalo V., Sakalo A., Rodikov A., Tomashevskiy S. Computer modeling of processes of wear and accumulation of rolling contact fatigue damage in railway wheels using combined criterion. Wear 432–433 (2019) 102900. DOI: 10.1016/j.wear.2019.05.015

4. Sakalo V., Sakalo A., Tomashevskiy S., Kerentcev D. Computer modelling of process of accumulation of rolling contact fatigue damage in railway wheels. International Journal of Fatigue 2018;111:7–15. DOI: 10.1016/j.ijfatigue.2018.02.002

5. Sakalo A.V. Improvement of the railway wheel tread profile according to a contact fatigue criterion. In: PhD Thesis Moscow State University of Railway Engineering (MIIT), Moscow, 2011 (in Russian).

6. Sakalo A.V. Simulation of accumulation of contact fatigue damages in railway wheel by using finite element fragments on elastic foundation. Vestnik of the Railway Research Institute 2011;4:44–49 (in Russian).

7. Sakalo V.I., Sakalo A.V. Numerical method for solving the contact problems for the solid bodies using the finite element fragments on the elastic foundation. In: Proc. of the 1st joint int. conf. on multibody system dynamics, Lappeenranta; 2010. p. 366–373.

8.
Sakalo A.V. Method of simulation of contact stresses by using finite element fragments on elastic foundation. Herald of the VSTU 2009;9:71–76 (in Russian).